Some Machine Learning Applications about Tree and Wood Short Talk for Digital Forestry Retreat

Fanyou Wu

Ph.D Candidate Department of Forestry and Natural Resources Purdue University

August 11. 2021

Lumber Identification

- **Objective:** Identify species of wood lumber based on **longitudinal section**.
- Data: 11 species, 3158 # board, private dataset.
- *Method:* Image classification, several different CNNs.
- Performance: 98.2% Acc. (local test), unknown for real world production.

Figure 1. Left: three wood sections*. Right: sample images for lumber ID.

* https://marette.smk.dk/-9711.html

Wu, F., Gazo, R., Haviarova, E., Benes, B. Wood identification based on longitudinal section images by using deep learning. Wood Sci Technol (2021).

wufanyou.com

Fanyou Wu @ Purdue FNR

Microscopic Wood Identification

- Objective: Identify species of microscopic wood slices.
- Data: 7426 species, 1-3 per species, > 100 attributes, public dataset.
- Method: Image classification, zero shot learning.
- Performance: About 80% Acc. for attribute. (Acc. is not a good metrics).

Figure 2. Left: a diagram of zero-shot learning*. Right: three wood sections of true hickory.

* Pourpanah, F. et al. A review of generalized zero-shot learning methods. (2020)

Wu, F., Gazo, R., Benes, B., Haviarova, E. Learn attributes of microscopic wood images based on convolutional neural network. (2021)

Fanyou Wu @ Purdue FNR

Growth Ring Detection

- **Objective**: Identify and count tree ring from rough images.
- Data: 11 species, 12 cookies per species, rough and clean surface.
- *Method:* Semantic Segmentation and/or image classification.
- Performance: Unknown.

Figure 3. Left: rough sample. Right: clean sample under annotation.

Wu, F., Warner, C.C. et al. (2021)

wufanyou.com

Fanyou Wu @ Purdue FNR

Tree Bark Identification

- Objective: Identify species of tree based on bark with a portable model.
- Data: 20 species, 998 trees (public dataset), 10 species, 61 trees (private dataset).
- Method: Image classification, knowledge distillation.
- Performance: 96.12% (local test), Need improvement for App.

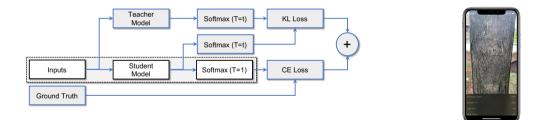


Figure 4. Left: visualization of our implementation of knowledge distillation. Right: bark ID App.

Wu, F., Gazo, R., Benes, B., Haviarova, E. Deep BarkID: a portable tree bark identification system by knowledge distillation. Eur J Forest Res (2021)

Question?

That's the end.

Reference

Fanyou Wu, Rado Gazo, Eva Haviarova, and Bedrich Benes. Wood identification based on longitudinal section images by using deep learning. *Wood Science and Technology*, 2021.

Fanyou Wu, Rado Gazo, Bedrich Benes, and Eva Haviarova.

Deep barkid: A portable tree bark identification system by knowledge distillation. *European Journal of Forest Research*, 2021.

Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim, and Xi-Zhao Wang. A review of generalized zero-shot learning methods. *arXiv preprint arXiv:2011.08641*, 2020.

wufanyou.com