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ABSTRACT
The Vehicle dispatching system has always been one of the most
critical problems in online taxi-hailing platforms to adapt the op-
eration and management strategy to the dynamics in demand and
supply. In this paper, we propose a single agent deep reinforcement
learning approach for vehicle repositioning by deploying idle ve-
hicles to specific locations to anticipate future demand at the desti-
nation. A global pruned action space, which encompasses a set of
𝑀 discrete actions, is used in this study. It can benefit drivers by
avoiding traveling to distant outskirts where there are few order
requests. We include not only the local information of vehicles as
the state, but also the global information in the whole study area,
i.e., the real-time distribution of orders, vehicles, and rewards. For
better performance, we design a simulator using the Julia program-
ming language, which brings about over ten times optimization in
speed compared with the simulator implementation in Python. An
efficient simulator, along with the tailored visualization tool, helps
us with the rapid update of our framework. Concerning the perfor-
mance, our team (TLab) has ranked first place in the development
phase of the vehicle repositioning task of KDD Cup 2020.

CCS CONCEPTS
• General and reference → General literature; • Computing
methodologies→ Intelligent agents.

1 INTRODUCTION
In the past decade, the online taxi-hailing service has gained ex-
tensive attention from urban travelers. The innovative operating
strategies offer exceptional convenience and flexibility to user ex-
perience,making it an indispensable component of themulti-modal
urban transportation network. Maintaining a balance between the
increasing demand and limited supply is the crux of the online taxi-
hailing platform operation.

Better knowledge about future demand is useful in lowering the
vehicle vacancy ratio and the operation cost. Abundant research re-
lating to demand prediction focused on digging the spatio-temporal
correlations of traffic dynamics. A convolutional neural network

(CNN) is often employed to model spatial relationships. Liu et al.
[6] designed a novel ensemble learning framework for taxi demand
prediction, which contains three attention blocks modeling the re-
lationships among basemodels, among spatial locations and among
positions of augmented feature maps. Inspired by ’personalization’
in recommendation systems [7], Liu et al. [8] proposed a person-
alized model for large-scale online taxi-hailing demand prediction
with two attention blocks to capture both spatial and temporal per-
spective. Some researchers argued that the road network could be
better modeled using a graph rather than a grid. In addition to
the spatial and temporal information captured by a local CNN and
LSTM, Yao et al. [17] constructed a location graph utilizing the
land use data to represent the similarity among regions. Lin et al.
[5] proposed the use of a data-driven graph filter to learn the hid-
den heterogeneous correlations between stations when applying
GCN to the bike demand prediction. Although graph-based mod-
els are powerful in terms of predictive ability, the major hindrance
of their applications in real scenarios is that updated base maps are
not always available. Liu et al. [9] use fine-grained partitioning to
maintain the road network topology and perform traffic prediction
using the industrial-scale real world probe data in three cities, cov-
ering approximately six thousand square kilometers in total.

Apart from predicting future demand, achieving the balance be-
tween demand and supply requires reasonable strategies for vehi-
cle repositioning and fleet management. The efficiency of the over-
all platform can be enhanced by reallocating vacant vehicles to
regions with a large demand gap in advance. Existing researches
in this field concentrate on mathematical programming. Song and
Earl [15] focused on determining the optimal strategies for vehicle
repositioning and the size of the fleet. Their model minimizes the
sum of the maintenance cost, repositioning cost, and leasing cost,
incorporating the uncertainty in vehicle arrival and repositioning
time. Nair and Miller-Hooks [12] designed a stochastic mixed inte-
ger program with joint chance constraints to generate a plan of ve-
hicle repositioning at the lowest cost. Roy et al. [14] proposed mod-
els based on the queueing theory to study various repositioning
strategies, the optimization objective of which is to minimize the
cost of the platform. They also designed a two-phase algorithm to
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solve the nonlinear programming problem with non-differentiable
objectives and interrelated decision variables. He et al. [1] formu-
lated vehicle repositioning problem as a stochastic dynamic pro-
gram, where distributionally robust optimization is used to allow
for the temporal dependence of demand. Ma et al. [10] considered
the integration of on-demand mobility services and public transit
systems and developed an effective dispatching algorithm to opti-
mize this novel integrated strategy.

It should be aware that the demand and supply are interdepen-
dent, which always changes when a repositioning strategy is ap-
plied. However, traditional mathematical programming and super-
vised learning techniques are difficult to capture these dynamics.
Therefore, deep reinforcement learning (DRL) is often adopted to
address the complex interactions between demand and supply in
vehicle repositioning problems. Lin et al. [4] proposed a contex-
tual fleet management framework based on multi-agent reinforce-
ment learning, comprised of two modules, i.e., contextual deep Q-
learning and contextual multi-agent actor-critic. Mao et al. [11]
also developed amodel-freemethod, i.e., a policy-basedDRL frame-
work, based on the actor-critic algorithm for vehicle dispatching.
In addition to drivers, a central management system, which makes
decisions for vehicle dispatching, is considered as an agent inHoller
et al. [2]’s formulation. Their network is also capable of learning
a global embedding of orders and drivers. Contrary to the cen-
tral management system, Zhou et al. [18] proposed a decentral-
ized strategy based on DRL, which does not require communica-
tion between agents, to adapt to large-scale vehicle repositioning
problems. Jin et al. [3] modeled vehicle repositioning as a large-
scale parallel ranking problem. A geographical hierarchy is con-
structed to accommodate the agent coordinations in various re-
gions, and a multi-head attention mechanism is used for the hi-
erarchical decision-making process.

2 DATA DESCRIPTION
The data used in this paper for the simulation environment are
extracted from the online car-hailing record of Chengdu, China,
which contains a large number of the trip trajectory (more than
forty million trajectory records per day) and order data (more than
seven million order records in total) in November 2016. GPS trajec-
tory records contain anonymized driver id, user id, timestamp, and
the corresponding latitude and longitude. Each trip order record
comprises the information of anonymous order id, starting time,
ending time, starting position, ending position, and reward of the
order.The spatial distribution of the raw order data is demonstrated
in Figure 1a . Considering that the model may fail to converge
due to data sparsity, we narrow down the study area. As shown
in Figure 1b, the longitudinal and latitudinal ranges of the selected
study area are [103.89𝐸, 104.28𝐸] and [30.5𝑁, 30.88𝑁 ], respec-
tively. Approximately 99.67% of the orders in the 30-day dataset
fall in our selected study area.

The statistics of hourly orders in hexagonal grids are listed in
Table 1. In the dataset, 50% of hexagonal grids receive 0.3 orders,
which further indicates the severity of data sparsity.

The distribution of hourly orders is demonstrated in Figure 2. It
can be observed that the demand is low before 7 a.m., while most
demand distributes in the other 17 hours. Different from passenger

(a) Full Area (b) Study Area

Figure 1: Spatial distribution of orders.

Table 1: Statistics of hourly orders

Hourly orders (order per hour, oph)
mean 6.308907
std 21.096421
min 0.001389
25% 0.069444
50% 0.313194
75% 2.179167
max 315.384722

demand of metro and bus, neither morning peak nor evening peak
can be observed concerning online taxi-hailing services.

Figure 2: Hourly order distribution

Table 2 lists the statistics of the driver’s operation time (with pas-
sengers in the vehicle) and online time on November 1. If no order
request is received within 30 minutes, the driver will be considered
offline, and thereafter the time will not include in the online time.

3 PROBLEM STATEMENT
The goal of vehicle repositioning task is to maximize the mean in-
dividual income rate 𝐺 (𝜋) for a small group of drivers:
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Table 2: Statistics of operation time and online time

Operation time Online time
mean 58.926749 90.234227
std 43.856806 69.664996
min 0.133333 0.250000
25% 25.766667 37.400000
50% 47.500000 71.600000
75% 80.983333 124.600000
max 382.800000 652.850000

where 𝜋 is the repositioning policy, 𝐽 (𝑛)
𝑘

(𝜋) is the total income for
driver 𝑘 on day 𝑛 and 𝐿 (𝑛)

𝑘
(𝜋) is the corresponding online time for

the driver.
We propose a single-agent reinforcement learning to solve this

problem which is slightly different from Lin et al. [5] Formally, we
treat the reposition problem as an MDP problem 𝐺 , defined by a
tuple 𝐺 = (S,A,P,R, 𝛾), where S,A,P,R, 𝛾 are the state, action
space, transition probability function, reward function, and a dis-
count factor respectively. The definitions are given as follows:
• Agent: Wemaintain a global repositioning agent for all vehicles,
which is easy to implement efficiently. A vehicle is eligible for
repositioning if and only if meet specific requirements, e.g., be-
ing idle for over five minutes. Suppose each vehicle requests for
repositioning every half an hour, and there will be 48 samples in
a day. Therefore, we design a single agent queue for dispatching
multiple vehicles, and the number of samples will be 480 when
given 10 vehicles. Here, the single-agent works as a global dis-
patcher, which receives the repositioning requests from the ve-
hicle. It should be noted that concurrent repositioning requests
do not exist in the environment of this competition. However, in
real applications, the single agent can return an action list, such
as the actions that can be matched with concurrent reposition-
ing requests.

• State 𝒔𝑡 ∈ S: The state defined in this paper contains two parts,
the global state and the auxiliary information state. In this exper-
iment, the whole study area is partitioned into a 𝑁 × 𝑁 square
grid in reference to the scope the trip data covers, each element
of which is called a region. We maintain a global state 𝒈𝒕 ∈
R3×𝑁×𝑁 , where 𝑡 is the current time. At each time 𝑡 , the three
channels of 𝑔𝑡 records the number of available vehicles, orders,
and the sum of orders’ rewards. Note that since the dispatch win-
dow is only two seconds, to mitigate the sparsity of the data, we
introduced a smoothing operation where the sum of the last 10
minutes of data is recorded in each channel. For each vehicle
repositioning request 𝑖 at time 𝑡 , the coordinate of the current
location 𝒍𝑖𝑡 ∈ R2 of the dispatched vehicle is used as an auxil-
iary information state. In addition, the current time 𝑡 (mapped
to [−1, 1] uniformly) is also used as an auxiliary information
state. Finally, the state of each vehicle repositioning request 𝑖 at
time 𝑡 , is defined as

𝑠𝑖𝑡 = {𝒈𝒕 , 𝒍𝑖𝑡 , 𝑡}
where vehicle repositioning requests in the same time share the
same global state 𝒈𝑡 .

• Action 𝑎𝑡 ∈ A: When determining the strategy for vehicle repo-
sitioning request 𝑖 at time 𝑡 , the action space A specifies where
the vehicle will be repositioned to at the following time. Lin et al.
[5] defined seven discrete actions allocating the agent to one of
its six neighboring grid items or staying in the current grid item.
In comparison, we do not use local action, which limits the vehi-
cle in the neighborhood of its current location. Instead, a global
pruned action space, which encompasses a set of 𝑀 discrete ac-
tions denoted by {𝑘}𝑀

𝑘=1, is used. Here,𝑀 is the total number of
hexagonal grids, where grid items with few orders are filtered
out based on historical data. According to experiment results,
this action space appears to bemore efficient, helping vehicles to
avoid traveling to distant outskirts where there are no or sparse
orders. Details on the policy of action selectionwill be elucidated
in Section 4.3.

• Reward functionR:The agent aims at maximizing its expected
discounted return, formulated as:

E

[ ∞∑
𝑘=0

𝛾𝑘𝑟 𝑖𝑡+𝑘

]
where 𝑟 𝑖𝑡 denotes the reward obtained from performing action
𝑎𝑖𝑡 , which can computed as:

𝑟 𝑖𝑡 =
𝑚∑
𝑗=1

(𝑜 𝑗 − 𝑝𝑒 𝑗 )

where𝑚 denotes the number of received orders before the next
repositioning request, and 𝑝 is a constant factor determined by
global statistic. 𝑜 𝑗 and 𝑒 𝑗 denotes the order revenue and picking
up eta respectively.

4 IMPLEMENTATION
In this section, we will introduce the implementation details of the
simulator, choice of action space, dispatching policy, and reposi-
tion agent. The primary procedures of our solution can be summa-
rized as follows:
• Julia Simulator,
• Greedy dispatching policy sorts the reward of orders in a unit
time, and a strategy for declining the order is prepared,

• The action space is not limited to the local region where vehicles
currently locate,

• Double Deep Q-learning for training the agent.

Table 3: Hyperparameter for the final submission

Description value
state region latitude 𝜙 ∈ [30.5𝑁, 30.88𝑁 ]
state region longitude 𝜆 ∈ [103.89𝐸, 104.28𝐸]
number of vehicles 𝑁𝑣 = 20000
order sample factor 𝑝𝑏 = 5.0
grid resolution 𝑁 = 30
move penalty 𝑝 = 0.002
number of action 𝑀 = 140

Hyperparameters used in the final solution are listed in Table 3.
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4.1 Simulator
The construction of learning environment is one of the fundamen-
tal challenges faced by the application of RL algorithms in reality,
and building tailored simulators for the environment is a common
practice in traffic research. For better performance, we write the
simulator using the Julia programming language. The simulator
can be decomposed into three different components, i.e., Vehicle,
Data and Simulator, which are all encapsulated as structs. Vehicle
(see Figure 3) is the base data structure storing the reward, avail-
ability and other information of each vehicle. Data is used for raw
file processing, while Simulator is for the running of the simula-
tor.

Figure 3: The code snap for the definition of vehicle.

All the environment dynamics are consistent with the descrip-
tion listed in the competition introduction. In this example, we
split one day into 𝑇 = 144 time intervals (one for 10 minutes).
Orders generated at the current time interval are bootstrapped by
a sampling factor 𝑝𝑏 from real orders that occurred in the same
time interval. At each full hour, each vehicle will update its state
stochastically, either offline (i.e., off from service) or online (i.e.,
start receiving order requests). The updated probability 𝑝 is deter-
mined based on statistics of historical data.The number of vehicles
𝑁𝑣 and 𝑝𝑏 are critical hyperparameters that affect the relationship
between supply and demand. We use hourly gross merchandise
volume (GMV, i.e., the value of all the orders served) curve from
the online submission to calibrate 𝑁𝑣 and 𝑝𝑏 . The correlation of
GMV between our simulator and online data is demonstrated in
Figure 4.

Themajor advantages of our simulator are (1) computing effiency
and (2) easiness for debugging.Thanks to Just-In-Time (JIT) compi-
lation and parallel computing capability of the Julia programming
language, we achieve around 10 times faster speed compared with
our simulator implementation in Python. Visualization, as shown
in Figure 5, is also critical for RL training and is helpful to under-
stand and debug the agent. It helps a lot to justify less desired ac-
tions and gives us more hints about the choice of action spaces and
how to train the agent.

Figure 4: The simulator calibration in terms of GMV (𝑅 =
0.9956). The red curves plot the GMV values of online data
while the blue are simulated result where 𝑝𝑏 = 5.0 and 𝑁𝑣 =
20000.

Figure 5: A simple training movement captured from our vi-
sualization tool. Grids in blue and red represent the reposi-
tion destinations and origins respectively.This visualization
shows a over fitting or less desired scenario that all destina-
tion are the same.

4.2 Choice of dispatching policy
Although we are allowed to deploy both dispatching and reposi-
tioning agent, a greedy policy is adopted to dispatch orders and
drivers for simplicity. In general, at each time window, we sort
all order-driver pairs by reward per unit time in descending order,
and the larger order-driver pair are more likely to be selected. Also,
we take the order destination as a restricted factor. In other words,
when the destination is undesirable, some orders will be declined
even if there are available drivers for this order.
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4.3 Choice of action space
The choice of action spaceA will highly influence not only the per-
formance but also the stability of the result. Typical action spaces
are listed below.
• Full global action space:
vehicles can be repositioned to any grid without any restriction,

• Pruned global action space:
vehicles can be repositioned to pre-defined grid set,

• Local action space:
vehicles can be repositioned to grids that are closed to the cur-
rent location by a pre-defined radius.

Based on our offline tests and online submissions, local action space
performs worse among those three. This can be attributed to that
our single-agent setting cannot catch up with the information on
vehicle location very well. Full global action space is the desired
action space, and however, is restrained by limited computational
capability. Therefore, pruned global action space, covering a small
subset (hot regions) of the full study area, is finally used.

4.4 Reposition agent
We apply Double deep Q-learning [16] for this task. Figure 6 illu-
minates our network architecture for policy network. To relief the
gap between the unknown online environment and ours, we nor-
malize the global state 𝒔𝑡 by min-max scaler and map it to [0, 1].
We use simple 𝜖-greedy to train the policy network and the train-
ing process is similar to that in pytorch DQN tutorial [13].

Figure 6: Policy Network Architecture

REFERENCES
[1] Long He, Zhenyu Hu, and Meilin Zhang. 2020. Robust Repositioning for Vehicle

Sharing. Manufacturing & Service Operations Management 22, 2 (2020), 241–256.
https://doi.org/10.1287/msom.2018.0734

[2] John Holler, Risto Vuorio, Zhiwei Qin, Xiaocheng Tang, Yan Jiao, Tiancheng
Jin, Satinder Singh, Chenxi Wang, and Jieping Ye. 2019. Deep Reinforcement
Learning for Multi-Driver Vehicle Dispatching and Repositioning Problem. In

2019 IEEE International Conference on Data Mining (ICDM). IEEE, Beijing, China,
1090–1095. https://doi.org/10.1109/ICDM.2019.00129

[3] Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan
Jiao, Xiaocheng Tang, ChenxiWang, JunWang, GuobinWu, and Jieping Ye. 2019.
CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-
Hailing Platforms. In Proceedings of the 28th ACM International Conference on
Information and KnowledgeManagement. ACM, Beijing China, 1983–1992. https:
//doi.org/10.1145/3357384.3357978

[4] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient Large-Scale
Fleet Management via Multi-Agent Deep Reinforcement Learning. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, London United Kingdom, 1774–1783. https://doi.org/10.
1145/3219819.3219993

[5] Lei Lin, ZhengbingHe, and Srinivas Peeta. 2018. Predicting Station-Level Hourly
Demand in a Large-Scale Bike-Sharing Network: A Graph Convolutional Neural
Network Approach. Transportation Research Part C: Emerging Technologies 97
(2018), 258–276. https://doi.org/10.1016/j.trc.2018.10.011

[6] Yang Liu, Zhiyuan Liu, Cheng Lyu, and Jieping Ye. 2019. Attention-Based Deep
Ensemble Net for Large-Scale Online Taxi-Hailing Demand Prediction. IEEE
Transactions on Intelligent Transportation Systems (2019), 1–10. https://doi.org/
10.1109/TITS.2019.2947145

[7] Yang Liu, Cheng Lyu, Zhiyuan Liu, and Dacheng Tao. 2019. Building Effective
Short Video Recommendation. In 2019 IEEE International Conference on Multi-
media & Expo Workshops (ICMEW). IEEE, Shanghai, China, 651–656. https:
//doi.org/10.1109/ICMEW.2019.00126

[8] Yang Liu, Fanyou Wu, Baosheng Yu, Zhiyuan Liu, and Jieping Ye. 2019. Build-
ing Effective Large-Scale Traffic State Prediction System: Traffic4cast Challenge
Solution. arXiv:1911.05699 [cs] (2019). arXiv:1911.05699 [cs]

[9] Zhiyuan Liu, Yang Liu, Cheng Lyu, and Jieping Ye. 2020. Building Personalized
Transportation Model for Online Taxi-Hailing Demand Prediction. IEEE Trans-
actions on Cybernetics In press (2020).

[10] Tai-Yu Ma, Saeid Rasulkhani, Joseph Y.J. Chow, and Sylvain Klein. 2019. A Dy-
namic Ridesharing Dispatch and Idle Vehicle Repositioning Strategy with Inte-
grated Transit Transfers. Transportation Research Part E: Logistics and Trans-
portation Review 128 (2019), 417–442. https://doi.org/10.1016/j.tre.2019.07.002

[11] Chao Mao, Yulin Liu, and Zuo-Jun (Max) Shen. 2020. Dispatch of Autonomous
Vehicles for Taxi Services: A Deep Reinforcement Learning Approach. Trans-
portation Research Part C: Emerging Technologies 115 (2020), 102626. https:
//doi.org/10.1016/j.trc.2020.102626

[12] Rahul Nair and Elise Miller-Hooks. 2011. Fleet Management for Vehicle Sharing
Operations. Transportation Science 45, 4 (2011), 524–540. https://doi.org/10.1287/
trsc.1100.0347

[13] Adam Paszke. [n.d.]. REINFORCEMENT LEARNING (DQN) TUTORIA. https:
//pytorch.org/tutorials/intermediate/reinforcement_q_learning.html. Accessed:
2020-05-01.

[14] Debjit Roy, Jennifer A. Pazour, and René de Koster. 2014. A Novel Approach for
Designing Rental Vehicle Repositioning Strategies. IIE Transactions 46, 9 (2014),
948–967. https://doi.org/10.1080/0740817X.2013.876129

[15] Dong-Ping Song and Christopher F. Earl. 2008. Optimal Empty Vehicle Reposi-
tioning and Fleet-Sizing for Two-Depot Service Systems. European Journal of
Operational Research 185, 2 (2008), 760–777. https://doi.org/10.1016/j.ejor.2006.
12.034

[16] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI conference on artificial intel-
ligence.

[17] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua
Gong, Jieping Ye, and Zhenhui Li. 2018. Deep Multi-View Spatial-Temporal Net-
work for Taxi Demand Prediction. In The Thirty-Second AAAI Conference on Ar-
tificial Intelligence (AAAI-18). AAAI, New Orleans, Louisiana, USA, 2589–2595.
arXiv:1802.08714

[18] Ming Zhou, Jiarui Jin, Weinan Zhang, Zhiwei Qin, Yan Jiao, Chenxi Wang,
GuobinWu, Yong Yu, and Jieping Ye. 2019. Multi-Agent Reinforcement Learning
for Order-Dispatching via Order-Vehicle Distribution Matching. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Manage-
ment. ACM, Beijing China, 2645–2653. https://doi.org/10.1145/3357384.3357799

5

https://doi.org/10.1287/msom.2018.0734
https://doi.org/10.1109/ICDM.2019.00129
https://doi.org/10.1145/3357384.3357978
https://doi.org/10.1145/3357384.3357978
https://doi.org/10.1145/3219819.3219993
https://doi.org/10.1145/3219819.3219993
https://doi.org/10.1016/j.trc.2018.10.011
https://doi.org/10.1109/TITS.2019.2947145
https://doi.org/10.1109/TITS.2019.2947145
https://doi.org/10.1109/ICMEW.2019.00126
https://doi.org/10.1109/ICMEW.2019.00126
https://arxiv.org/abs/1911.05699
https://doi.org/10.1016/j.tre.2019.07.002
https://doi.org/10.1016/j.trc.2020.102626
https://doi.org/10.1016/j.trc.2020.102626
https://doi.org/10.1287/trsc.1100.0347
https://doi.org/10.1287/trsc.1100.0347
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://doi.org/10.1080/0740817X.2013.876129
https://doi.org/10.1016/j.ejor.2006.12.034
https://doi.org/10.1016/j.ejor.2006.12.034
https://arxiv.org/abs/1802.08714
https://doi.org/10.1145/3357384.3357799


Wu and Liu

ABOUT US

Team members
• Fanyou Wu is currently a Ph.D. candidate at Purdue University, Forestry and Natural Resources Department. His research focuses on
the application of machine learning in forest related problem.

• Yang Liu is now pursuing a Ph.D. degree in Transportation Engineering in the School of Transportation at Southeast University, China.
He was a visiting student in University of Sydney (supervisor: Prof. Dacheng Tao) from August 2019 to December 2019. His research
interest is machine learning and its applications in intelligent transportation systems.

• Cheng Lyu is now pursuing a Master’s degree in Transportation Engineering in the School of Transportation at Southeast University,
China. His research interest is machine learning and its applications in intelligent transportation systems.

IJCAI 19 at Macau, Fanyou Wu is on the first left and Yang Liu is on the second left.

6


	Abstract
	1 Introduction
	2 data description
	3 Problem Statement
	4 Implementation
	4.1 Simulator
	4.2  Choice of dispatching policy
	4.3 Choice of action space
	4.4 Reposition agent

	References

